Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A dinuclear manganese(II) complex with a 4-aminoantipyrine-derived Schiff base ligand

Wen-Na Zhao

Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100, People's Republic of China

Correspondence e-mail: wnzhao@nit.net.cn

Received 6 May 2007; accepted 3 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.058; wR factor = 0.114; data-to-parameter ratio = 17.9.

In the crystal structure of the centrosymmetric title complex, bis[μ -(E)-1,5-dimethyl-2-phenyl-4-(3-pyridylmethyleneamino)pyrazol-3(2H)-one]bis{dibromido[(E)-1,5-dimethyl-2phenyl-4-(3-pyridylmethyleneamino)pyrazol-3(2H)-one]manganese(II)}, [Mn₂Br₄(C₁₇H₁₆N₄O)₄], the Mn atom adopts a trigonal-bipyramidal geometry and the ligand adopts two coordination modes, monodentate and bidentate bridging.

Related literature

For related literature, see: Liang *et al.* (2002, 2004); Montalvo-Gonzalez & Ariza-Castolo (2003); O'Donnell (2004); Rajendran & Sreeletha (2002); Raman *et al.* (2001); Wang *et al.* (2003).

Experimental

Crystal data

a = 10.052 (2) Å
b = 12.372 (3) Å
c = 15.257 (3) Å

 $\alpha = 72.68 (3)^{\circ}$ $\beta = 77.66 (3)^{\circ}$ $\gamma = 71.09 (3)^{\circ}$ $V = 1699.2 (6) \text{ Å}^{3}$ Z = 1

Data collection

Bruker SMART APEX II CCD	16756 measured reflections
diffractometer	7658 independent reflections
Absorption correction: multi-scan	4058 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.073$
$T_{\min} = 0.555, T_{\max} = 0.634$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.058 & \mbox{428 parameters} \\ WR(F^2) = 0.114 & \mbox{H-atom parameters constrained} \\ S = 0.99 & \mbox{$\Delta\rho_{\rm max}$} = 0.48 \ {\rm e} \ {\rm \AA}^{-3} \\ 7658 \ {\rm reflections} & \mbox{$\Delta\rho_{\rm min}$} = -0.53 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å, °).

Br1-Mn1	2.5441 (12)	Mn1-N5 ⁱ	2.341 (4)
Br2-Mn1	2.5387 (12)	Mn1-N1	2.360 (4)
Mn1-O2	2.080 (3)		
O2-Mn1-N5 ⁱ	87.27 (13)	N1-Mn1-Br2	93.63 (11)
O2-Mn1-N1	89.45 (14)	O2-Mn1-Br1	122.63 (10)
N5 ⁱ -Mn1-N1	171.60 (15)	N5 ⁱ -Mn1-Br1	86.76 (10)
O2-Mn1-Br2	109.22 (10)	N1-Mn1-Br1	88.51 (11)
N5 ⁱ -Mn1-Br2	94.75 (10)	Br2-Mn1-Br1	128.13 (4)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2058).

References

Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Liang, H., Wang, X.-W., Chen, Z.-F., Huang, L., Zou, H.-L., Zhou, J. & Yu, K.-B. (2004). *Acta Cryst.* E60, m294–m296.
- Liang, H., Yu, Q., Hu, R.-X., Zhou, Z.-Y. & Zhou, X.-G. (2002). Transition Met. Chem. 27, 455–457.
- Montalvo-Gonzalez, R. & Ariza-Castolo, A. (2003). J. Mol. Struct. 655, 375–389.
- O'Donnell, M. J. (2004). Acc. Chem. Res. 37, 506-517.
- Rajendran, G. & Sreeletha, G. S. (2002). Asian J. Chem. 14, 1639-1645.
- Raman, N., Kulandaisamy, A., Shunmugasundaram, A. & Jeyasubramanian, K. (2001). Transition Met. Chem. 26, 131–135.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, J.-L., Ding, F. & Miao, F.-M. (2003). Acta Cryst. E59, m128-m130.

Mo $K\alpha$ radiation $\mu = 2.78 \text{ mm}^{-1}$

 $0.24 \times 0.20 \times 0.18 \text{ mm}$

T = 298 (2) K

Acta Cryst. (2007). E63, m2095 [doi:10.1107/S1600536807032461]

A dinuclear manganese(II) complex with a 4-aminoantipyrine-derived Schiff base ligand

W.-N. Zhao

Comment

Great effort is currently being devoted to the design and syntheses of metal Schiff base complexes due to their potential applications as functional materials (O'Donnell, 2004). The Schiff bases of 4-aminoantipyrine and their complexes have been extensively investigated because of their biological, clinical and pharmacological applications (Rajendran & Sreeletha, 2002; Raman *et al.*, 2001). However, only a few structurally characterized metal complexes with 4-aminoantipyrine Schiff base derived ligands have been reported, and its coordination chemistry remains largely unexplored (Liang *et al.*, 2004; Liang *et al.*, 2002; Wang *et al.*, 2003). Herein we report the synthesis and crystal structure of a new dinuclear manganese(II) complex with a 4-aminoantipyrine derived Schiff base ligand: $Mn_2(L_4)Br_4$ (L = (E)-1,5-dimethyl-2-phenyl-4-(pyridin-3-yl-methyleneamino)-1,2-dihydropyrazol-3-one) (I).

The ligand *L* was synthesized as reported previously by the base condensation of 4-aminoantipyrine with pyridine-3-carboxaldehyde (Montalvo-Gonzalez & Arisa-Castolo 2003). The title complex (**I**) was obtained under solvothermal conditions and characterized by X-ray crystallography. The molecular structure of (**I**) is shown in Fig. 1. Selected bond distances and bond angles are normal and listed in Table 1. (**I**) is a dinuclear Mn^{II} complex arranged around an inversion center. Each Mn atom is coordinated by two pyridine N atoms from two ligands, and one pyrazole O atom from another ligand, and two Br anions in a trigonal-bipyramidal geometry. There are two kinds of coordination modes of ligand *L*: one is monodentately linked to the Mn center through the N atom of the pyridine group, the other bidentately bridges two Mn centers by pyridine N atom and pyrazole O atom. The dimer Mn₂L₂ ring is formed with Mn···Mn separation of 8.878 (4) Å.

Experimental

A 25 ml Teflon-lined stainless steel autoclave was charged with 0.215 g (1 mmol) $MnBr_2$, 0.260 g (1 mmol) *L* and 15 ml CH₃OH and heated at 80 °C for 24 h in oven, then cooled to room temperature. Red crystals were obtained in 60% yield based on the initial MnBr₂.

Refinement

All H atoms on sp^2 C atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 and $U_{iso}(H) = 1.2 U_{eq}(C)$; All H atoms on sp^3 C (Me groups) atoms were located and refined by using the hfix 137 command.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms were omitted for clarity. (Symmetry codes: (A) -x + 1, -y + 1, -z + 1.)

 $bis[\mu-(E)-1,5-dimethyl-2-phenyl-4-(3-pyridylmethyleneamino)pyrazol-\ 3(2H)-one]bis{dibromido[(E)-1,5-dimethyl-2-phenyl-4-(3-\ pyridylmethyleneamino)pyrazol-3(2H)-one]manganese(II)}$

Crystal data

$[Mn_2Br_4(C_{17}H_{16}N_4O)_4]$	V = 1699.2 (6) Å ³
$M_r = 1598.87$	Z = 1
Triclinic, PT	$F_{000} = 806$
Hall symbol: -P 1	$D_{\rm x} = 1.563 \ {\rm Mg \ m}^{-3}$
a = 10.052 (2) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 12.372 (3) Å	$\theta = 3.1 - 27.5^{\circ}$
c = 15.257 (3) Å	$\mu = 2.78 \text{ mm}^{-1}$
$\alpha = 72.68 \ (3)^{\circ}$	T = 298 (2) K
$\beta = 77.66 \ (3)^{\circ}$	Block, red
$\gamma = 71.09 \ (3)^{\circ}$	$0.24 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART APEX II CCD diffractometer	7658 independent reflections
Radiation source: fine-focus sealed tube	4058 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.073$
Detector resolution: 8.40 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 298(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -13 \rightarrow 12$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -16 \rightarrow 13$
$T_{\min} = 0.555, \ T_{\max} = 0.634$	$l = -19 \rightarrow 19$
16756 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$

 $wR(F^2) = 0.114$

S = 0.99

7658 reflections

428 parameters

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: geom, Me from difmap H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0306P)^2 + 1.9264P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.53 \text{ e} \text{ Å}^{-3}$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Brl 0.63805 (6) 0.05458 (5) 0.35815 (4) 0.04788 (16) Br2 0.63104 (6) 0.44060 (5) 0.23134 (4) 0.05393 (18) Mn1 0.51827 (8) 0.27528 (6) 0.31633 (5) 0.03622 (19) C1 0.4160 (5) 0.1657 (5) 0.1809 (4) 0.0478 (14) H1A 0.4031 0.1123 0.2373 0.057* C2 0.3812 (5) 0.1489 (5) 0.1036 (3) 0.0441 (13) C3 0.4052 (6) 0.2288 (5) 0.0195 (4) 0.0579 (16) H3A 0.3857 0.2203 -0.0346 0.069* C4 0.4569 (6) 0.3189 (5) 0.0165 (4) 0.0592 (16) H4A 0.4725 0.3725 -0.0394 0.071* C5 0.4861 (6) 0.3296 (5) 0.0976 (4) 0.0511 (14) H5A 0.5204 0.3920 0.0951 0.061* C6 0.3263 (5) 0.0506 (5) 0.1086 (4) 0.0532 (15) C7 0.2306 (5) -0.1420 (5) 0.1010 (4)		x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br2 0.63104 (6) 0.44060 (5) 0.23134 (4) 0.05393 (18) Mn1 0.51827 (8) 0.27528 (6) 0.31633 (5) 0.03622 (19) C1 0.4160 (5) 0.1657 (5) 0.1809 (4) 0.0478 (14) H1A 0.4031 0.1123 0.2373 0.057* C2 0.3812 (5) 0.1489 (5) 0.1036 (3) 0.0441 (13) C3 0.4052 (6) 0.2203 -0.0346 0.069* C4 0.4569 (6) 0.3189 (5) 0.0165 (4) 0.0592 (16) H4A 0.4725 0.3725 -0.0394 0.071* C5 0.4861 (6) 0.3296 (5) 0.1086 (4) 0.0503 (14) H5A 0.5204 0.3920 0.0951 0.061* C6 0.3263 (5) -0.0400 (5) 0.1031 (2) 0.0444 (13) C8 0.2039 (6) -0.1426 (5) 0.1000 (4) 0.0532 (15) C9 0.1419 (7) -0.1849 (6) -0.1123 (4) 0.0653 (17) H9A 0.1759 -0.1408 -0.1713 <	Br1	0.63805 (6)	0.05458 (5)	0.35815 (4)	0.04788 (16)
Mn1 0.51827 (8) 0.27528 (6) 0.31633 (5) 0.03622 (19) C1 0.4160 (5) 0.1657 (5) 0.1809 (4) 0.0478 (14) H1A 0.4031 0.1123 0.2373 0.057* C2 0.3812 (5) 0.1489 (5) 0.1036 (3) 0.0441 (13) C3 0.4052 (6) 0.2203 -0.0346 0.069* C4 0.4569 (6) 0.3189 (5) 0.0165 (4) 0.0592 (16) H4A 0.4725 0.3725 -0.0394 0.071* C5 0.4861 (6) 0.3296 (5) 0.0976 (4) 0.0511 (14) H5A 0.5204 0.3920 0.0951 0.061* C6 0.3236 (5) -0.0400 (5) 0.1086 (4) 0.0533 (14) H6A 0.3232 -0.0083 0.1631 0.060* C7 0.2306 (5) -0.1406 (5) 0.0312 (3) 0.0444 (13) C8 0.2039 (6) -0.1426 (5) 0.1000 (4) 0.0533 (17) H9A 0.1759 -0.1408 -0.1713 0.098* </td <td>Br2</td> <td>0.63104 (6)</td> <td>0.44060 (5)</td> <td>0.23134 (4)</td> <td>0.05393 (18)</td>	Br2	0.63104 (6)	0.44060 (5)	0.23134 (4)	0.05393 (18)
C1 0.4160 (5) 0.1657 (5) 0.1809 (4) 0.0478 (14)H1A 0.4031 0.1123 0.2373 $0.057*$ C2 0.3812 (5) 0.1489 (5) 0.1036 (3) 0.0441 (13)C3 0.4052 (6) 0.2288 (5) 0.0195 (4) 0.0579 (16)H3A 0.3857 0.2203 -0.0346 $0.069*$ C4 0.4569 (6) 0.3189 (5) 0.0165 (4) 0.0592 (16)H4A 0.4725 0.3725 -0.0394 $0.071*$ C5 0.4861 (6) 0.3296 (5) 0.0976 (4) 0.0511 (14)H5A 0.5204 0.3920 0.0951 $0.061*$ C6 0.3236 (5) 0.0506 (5) 0.1086 (4) 0.0503 (14)H6A 0.3232 -0.0083 0.1631 $0.060*$ C7 0.2306 (5) -0.0400 (5) 0.0312 (3) 0.0444 (13)C8 0.2039 (6) -0.1426 (5) 0.1000 (4) 0.0532 (15)C9 0.1419 (7) -0.1849 (6) -0.1123 (4) 0.0653 (17)H9A 0.1759 -0.1408 -0.1713 $0.098*$ H9B 0.0449 -0.1813 -0.1116 $0.098*$ H9C 0.1985 -0.2656 -0.1019 $0.098*$ C10 0.1982 (6) -0.0455 (5) -0.1417 (4) 0.0659 (17)H11A 0.2774 0.0057 -0.1856 $0.099*$ C11 0.1205 0.0795 -0.1635 $0.099*$ C12 0.1099 (6) -0.3036 (5) 0.0855 (3) <td>Mn1</td> <td>0.51827 (8)</td> <td>0.27528 (6)</td> <td>0.31633 (5)</td> <td>0.03622 (19)</td>	Mn1	0.51827 (8)	0.27528 (6)	0.31633 (5)	0.03622 (19)
H1A 0.4031 0.1123 0.2373 $0.057*$ C2 $0.3812 (5)$ $0.1489 (5)$ $0.1036 (3)$ $0.0441 (13)$ C3 $0.4052 (6)$ $0.2288 (5)$ $0.0195 (4)$ $0.0579 (16)$ H3A 0.3857 0.2203 -0.0346 $0.069*$ C4 $0.4569 (6)$ $0.3189 (5)$ $0.0165 (4)$ $0.0592 (16)$ H4A 0.4725 0.3725 -0.0394 $0.071*$ C5 $0.4861 (6)$ $0.3296 (5)$ $0.0976 (4)$ $0.0511 (14)$ H5A 0.5204 0.3920 0.0951 $0.066*$ C6 $0.3233 (5)$ $0.0506 (5)$ $0.1086 (4)$ $0.0503 (14)$ H6A 0.3232 -0.0083 0.1631 $0.060*$ C7 $0.2306 (5)$ $-0.0400 (5)$ $0.0312 (3)$ $0.444 (13)$ C8 $0.2039 (6)$ $-0.1426 (5)$ $0.1000 (4)$ $0.0532 (15)$ C9 $0.1419 (7)$ $-0.1849 (6)$ $-0.1123 (4)$ $0.0653 (17)$ H9A 0.1759 -0.1408 -0.1713 $0.098*$ H9B 0.0449 -0.1813 -0.1116 $0.098*$ H9C 0.1985 -0.2656 -0.1019 $0.098*$ C10 $0.1982 (6)$ $-0.0416 (5)$ $-0.0504 (3)$ $0.0478 (14)$ C11 $0.2115 (7)$ $0.0452 (5)$ $-0.1417 (4)$ $0.0659 (17)$ H11A 0.2774 0.0057 -0.1836 $0.099*$ C12 $0.1099 (6)$ $-0.3036 (5)$ $0.0855 (3)$ $0.0456 (13)$ C13 $0.1934 (6)$ $-0.0506 (6)$ <	C1	0.4160 (5)	0.1657 (5)	0.1809 (4)	0.0478 (14)
C2 0.3812 (5) 0.1489 (5) 0.1036 (3) 0.0441 (13) C3 0.4052 (6) 0.2288 (5) 0.0195 (4) 0.0579 (16) H3A 0.3857 0.2203 -0.0346 0.069* C4 0.4569 (6) 0.3189 (5) 0.0165 (4) 0.0592 (16) H4A 0.4725 0.3725 -0.0394 0.071* C5 0.4861 (6) 0.3296 (5) 0.0976 (4) 0.0511 (14) H5A 0.5204 0.3920 0.0951 0.061* C6 0.3263 (5) 0.0506 (5) 0.1086 (4) 0.0503 (14) H6A 0.3232 -0.0083 0.1631 0.060* C7 0.2306 (5) -0.1406 (5) 0.1000 (4) 0.0532 (15) C9 0.1419 (7) -0.1849 (6) -0.1123 (4) 0.0653 (17) H9A 0.1759 -0.1408 -0.1713 0.098* C10 0.1982 (6) -0.0416 (5) -0.0504 (3) 0.0478 (14) C11 0.2115 (7) 0.0452 (5) -0.1417 (4) 0.0659 (17	H1A	0.4031	0.1123	0.2373	0.057*
C30.4052 (6)0.2288 (5)0.0195 (4)0.0579 (16)H3A0.38570.2203-0.03460.069*C40.4569 (6)0.3189 (5)0.0165 (4)0.0592 (16)H4A0.47250.3725-0.03940.071*C50.4861 (6)0.3296 (5)0.0976 (4)0.0511 (14)H5A0.52040.39200.09510.061*C60.3236 (5)0.0506 (5)0.1086 (4)0.0503 (14)H6A0.3232-0.00830.16310.060*C70.2306 (5)-0.1426 (5)0.1000 (4)0.0532 (15)C90.1419 (7)-0.1849 (6)-0.1123 (4)0.0653 (17)H9A0.1759-0.1408-0.17130.098*H9B0.0449-0.1813-0.11160.098*C100.1982 (6)-0.0416 (5)-0.0504 (3)0.0478 (14)C110.2115 (7)0.0452 (5)-0.1417 (4)0.0659 (17)H11A0.27740.0057-0.18560.099*H11B0.24500.1061-0.13460.099*H11B0.24500.1061-0.13460.099*C120.1099 (6)-0.3036 (5)0.855 (3)0.0456 (13)C130.1934 (6)-0.4053 (6)0.1433 (4)0.6684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.1429 (4)0.0716 (19)H15A-0.033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5	C2	0.3812 (5)	0.1489 (5)	0.1036 (3)	0.0441 (13)
H3A0.38570.2203-0.03460.069*C40.4569 (6)0.3189 (5)0.0165 (4)0.0592 (16)H4A0.47250.3725-0.03940.071*C50.4861 (6)0.3296 (5)0.0976 (4)0.0511 (14)H5A0.52040.39200.09510.061*C60.3263 (5)0.0506 (5)0.1086 (4)0.503 (14)H6A0.3232-0.0830.16310.060*C70.2306 (5)-0.0400 (5)0.0312 (3)0.0444 (13)C80.2039 (6)-0.1426 (5)0.1000 (4)0.532 (15)C90.1419 (7)-0.1849 (6)-0.1123 (4)0.0653 (17)H9A0.1759-0.1408-0.17130.098*H9B0.0449-0.1813-0.11160.098*H9C0.1985-0.2656-0.10190.098*C100.1982 (6)-0.0416 (5)-0.0504 (3)0.0478 (14)C110.2115 (7)0.0452 (5)-0.1417 (4)0.0659 (17)H11A0.27740.0057-0.18560.099*H11B0.24500.1061-0.13460.099*C120.1099 (6)-0.3036 (5)0.0855 (3)0.0456 (13)C130.1934 (6)-0.4053 (6)0.1439 (4)0.0684 (19)H13A0.2790-0.40590.14980.073*C140.1494 (7)-0.5066 (6)0.1643 (4)0.0684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)<	C3	0.4052 (6)	0.2288 (5)	0.0195 (4)	0.0579 (16)
C4 $0.4569 (6)$ $0.3189 (5)$ $0.0165 (4)$ $0.0592 (16)$ H4A 0.4725 0.3725 -0.0394 $0.071*$ C5 $0.4861 (6)$ $0.3296 (5)$ $0.0976 (4)$ $0.0511 (14)$ H5A 0.5204 0.3920 0.0951 $0.061*$ C6 $0.3263 (5)$ $0.0506 (5)$ $0.1086 (4)$ $0.503 (14)$ H6A 0.3232 -0.0083 0.1631 $0.060*$ C7 $0.2306 (5)$ $-0.0400 (5)$ $0.0312 (3)$ $0.0444 (13)$ C8 $0.2039 (6)$ $-0.1426 (5)$ $0.1000 (4)$ $0.532 (15)$ C9 $0.1419 (7)$ $-0.1849 (6)$ $-0.1123 (4)$ $0.0653 (17)$ H9A 0.1759 -0.1408 -0.1713 $0.098*$ H9B 0.0449 -0.1813 -0.1116 $0.098*$ H9C 0.1985 -0.2656 -0.1019 $0.098*$ C10 $0.1982 (6)$ $-0.0416 (5)$ $-0.0504 (3)$ $0.0478 (14)$ C11 $0.2115 (7)$ $0.0452 (5)$ $-0.1417 (4)$ $0.0659 (17)$ H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ C12 $0.1099 (6)$ $-0.3036 (5)$ $0.0855 (3)$ $0.0456 (13)$ C13 $0.1934 (6)$ $-0.4053 (6)$ $0.1438 (4)$ $0.0611 (17)$ H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 $0.1494 (7)$ $-0.5066 (6)$ $0.1643 (4)$ $0.0684 (19)$ H14A 0.2055 -0.5752 <t< td=""><td>H3A</td><td>0.3857</td><td>0.2203</td><td>-0.0346</td><td>0.069*</td></t<>	H3A	0.3857	0.2203	-0.0346	0.069*
H4A0.47250.3725-0.03940.071*C50.4861 (6)0.3296 (5)0.0976 (4)0.0511 (14)H5A0.52040.39200.09510.061*C60.3263 (5)0.0506 (5)0.1086 (4)0.503 (14)H6A0.3232-0.00830.16310.060*C70.2306 (5)-0.0400 (5)0.0312 (3)0.0444 (13)C80.2039 (6)-0.1426 (5)0.1000 (4)0.0532 (15)C90.1419 (7)-0.1849 (6)-0.1123 (4)0.0653 (17)H9A0.1759-0.1408-0.17130.098*H9B0.0449-0.1813-0.11160.098*H9C0.1985-0.2656-0.10190.098*C100.1982 (6)-0.0416 (5)-0.0504 (3)0.0478 (14)C110.2115 (7)0.0452 (5)-0.1417 (4)0.0659 (17)H11A0.27740.0057-0.18560.099*H11B0.24500.1061-0.13460.099*H11C0.12050.0795-0.16350.099*C120.1099 (6)-0.3036 (5)0.855 (3)0.0456 (13)C130.1934 (6)-0.4053 (6)0.1438 (4)0.0684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.16140.086*C16-0.033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.633 (17)	C4	0.4569 (6)	0.3189 (5)	0.0165 (4)	0.0592 (16)
C5 $0.4861(6)$ $0.3296(5)$ $0.0976(4)$ $0.0511(14)$ H5A 0.5204 0.3920 0.0951 0.061^* C6 $0.3263(5)$ $0.0506(5)$ $0.1086(4)$ $0.0503(14)$ H6A 0.3232 -0.0083 0.1631 0.060^* C7 $0.2306(5)$ $-0.0400(5)$ $0.0312(3)$ $0.0444(13)$ C8 $0.2039(6)$ $-0.1426(5)$ $0.1000(4)$ $0.0532(15)$ C9 $0.1419(7)$ $-0.1849(6)$ $-0.1123(4)$ $0.0653(17)$ H9A 0.1759 -0.1408 -0.1713 0.098^* H9B 0.0449 -0.1813 -0.1116 0.098^* C10 0.1985 -0.2656 -0.1019 0.098^* C11 $0.2115(7)$ $0.0452(5)$ $-0.1417(4)$ $0.0659(17)$ H11A 0.2774 0.0057 -0.1856 0.099^* H11B 0.2450 0.1061 -0.1346 0.099^* H11B 0.2450 0.1061 -0.1346 0.099^* C12 $0.1099(6)$ $-0.3036(5)$ $0.0855(3)$ $0.0456(13)$ C13 $0.1934(6)$ $-0.4053(6)$ $0.1355(4)$ $0.0611(17)$ H13A 0.2790 -0.4059 0.1498 0.073^* C14 $0.1494(7)$ $-0.5066(6)$ $0.1643(4)$ $0.0684(19)$ H14A 0.2055 -0.5752 0.1988 0.082^* C15 $0.0245(8)$ $-0.5076(6)$ 0.1614 0.086^* C16 $-0.0588(7)$ $-0.4060(5)$ $0.0940(4)$ $0.633(17)$ <td>H4A</td> <td>0.4725</td> <td>0.3725</td> <td>-0.0394</td> <td>0.071*</td>	H4A	0.4725	0.3725	-0.0394	0.071*
H5A0.52040.39200.09510.061*C60.3263 (5)0.0506 (5)0.1086 (4)0.0503 (14)H6A0.3232-0.00830.16310.060*C70.2306 (5)-0.0400 (5)0.0312 (3)0.0444 (13)C80.2039 (6)-0.1426 (5)0.1000 (4)0.0532 (15)C90.1419 (7)-0.1849 (6)-0.1123 (4)0.0653 (17)H9A0.1759-0.1408-0.17130.098*H9B0.0449-0.1813-0.11160.098*C100.1985-0.2656-0.10190.098*C100.1982 (6)-0.0416 (5)-0.0504 (3)0.0478 (14)C110.2115 (7)0.0452 (5)-0.1417 (4)0.0659 (17)H11A0.27740.0057-0.18560.099*H11B0.24500.1061-0.13460.099*H11C0.12050.0795-0.16350.099*C120.1099 (6)-0.3036 (5)0.855 (3)0.0456 (13)C130.1934 (6)-0.4053 (6)0.14380.073*C140.1494 (7)-0.5066 (6)0.1643 (4)0.0684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	C5	0.4861 (6)	0.3296 (5)	0.0976 (4)	0.0511 (14)
C6 $0.3263 (5)$ $0.0506 (5)$ $0.1086 (4)$ $0.0503 (14)$ H6A 0.3232 -0.0083 0.1631 $0.060*$ C7 $0.2306 (5)$ $-0.0400 (5)$ $0.0312 (3)$ $0.0444 (13)$ C8 $0.2039 (6)$ $-0.1426 (5)$ $0.1000 (4)$ $0.0532 (15)$ C9 $0.1419 (7)$ $-0.1849 (6)$ $-0.1123 (4)$ $0.0653 (17)$ H9A 0.1759 -0.1408 -0.1713 $0.098*$ H9B 0.0449 -0.1813 -0.1116 $0.098*$ C10 0.1985 -0.2656 -0.1019 $0.098*$ C11 $0.2115 (7)$ $0.0452 (5)$ $-0.1417 (4)$ $0.0659 (17)$ H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 $0.1099 (6)$ $-0.3036 (5)$ $0.855 (3)$ $0.0456 (13)$ C13 $0.1934 (6)$ $-0.4053 (6)$ 0.1498 $0.073*$ C14 $0.1494 (7)$ $-0.5066 (6)$ $0.1643 (4)$ $0.0684 (19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245 (8)$ $-0.5076 (6)$ 0.1614 $0.086*$ C16 $-0.0588 (7)$ $-0.4060 (5)$ $0.0940 (4)$ $0.0633 (17)$	H5A	0.5204	0.3920	0.0951	0.061*
H6A 0.3232 -0.0083 0.1631 $0.060*$ C7 0.2306 (5) -0.0400 (5) 0.0312 (3) 0.0444 (13)C8 0.2039 (6) -0.1426 (5) 0.1000 (4) 0.0532 (15)C9 0.1419 (7) -0.1849 (6) -0.1123 (4) 0.0653 (17)H9A 0.1759 -0.1408 -0.1713 $0.098*$ H9B 0.0449 -0.1813 -0.1116 $0.098*$ H9C 0.1985 -0.2656 -0.1019 $0.098*$ C10 0.1982 (6) -0.0416 (5) -0.0504 (3) 0.0478 (14)C11 0.2115 (7) 0.0452 (5) -0.1417 (4) 0.0659 (17)H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 0.1099 (6) -0.3036 (5) 0.855 (3) 0.0456 (13)C13 0.1934 (6) -0.4053 (6) 0.1355 (4) 0.0611 (17)H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 0.1494 (7) -0.5066 (6) 0.1643 (4) 0.0684 (19)H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 0.0245 (8) -0.5076 (6) 0.1429 (4) 0.0716 (19)H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 -0.0588 (7) -0.4060 (5) 0.0940 (4) 0.6633 (17)	C6	0.3263 (5)	0.0506 (5)	0.1086 (4)	0.0503 (14)
C7 $0.2306(5)$ $-0.0400(5)$ $0.0312(3)$ $0.0444(13)$ C8 $0.2039(6)$ $-0.1426(5)$ $0.1000(4)$ $0.0532(15)$ C9 $0.1419(7)$ $-0.1849(6)$ $-0.1123(4)$ $0.0653(17)$ H9A 0.1759 -0.1408 -0.1713 $0.098*$ H9B 0.0449 -0.1813 -0.1116 $0.098*$ H9C 0.1985 -0.2656 -0.1019 $0.098*$ C10 $0.1982(6)$ $-0.0416(5)$ $-0.0504(3)$ $0.0478(14)$ C11 $0.2115(7)$ $0.0452(5)$ $-0.1417(4)$ $0.0659(17)$ H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ C12 $0.1099(6)$ $-0.3036(5)$ $0.855(3)$ $0.0456(13)$ C13 $0.1934(6)$ $-0.4053(6)$ 0.1498 $0.073*$ C14 $0.1494(7)$ $-0.5066(6)$ $0.1429(4)$ $0.0716(19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245(8)$ $-0.5076(6)$ $0.1429(4)$ $0.0716(19)$ H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 $-0.0588(7)$ $-0.4060(5)$ $0.0940(4)$ $0.6633(17)$	H6A	0.3232	-0.0083	0.1631	0.060*
C8 $0.2039(6)$ $-0.1426(5)$ $0.1000(4)$ $0.0532(15)$ C9 $0.1419(7)$ $-0.1849(6)$ $-0.1123(4)$ $0.0653(17)$ H9A 0.1759 -0.1408 -0.1713 $0.098*$ H9B 0.0449 -0.1813 -0.1116 $0.098*$ H9C 0.1985 -0.2656 -0.1019 $0.098*$ C10 $0.1982(6)$ $-0.0416(5)$ $-0.0504(3)$ $0.0478(14)$ C11 $0.2115(7)$ $0.0452(5)$ $-0.1417(4)$ $0.0659(17)$ H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 $0.1099(6)$ $-0.3036(5)$ $0.855(3)$ $0.0456(13)$ C13 $0.1934(6)$ $-0.4053(6)$ 0.1498 $0.073*$ C14 $0.1494(7)$ $-0.5066(6)$ $0.1643(4)$ $0.0684(19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245(8)$ $-0.5076(6)$ 0.1614 $0.086*$ C16 -0.033 -0.5766 $0.0940(4)$ $0.0633(17)$	C7	0.2306 (5)	-0.0400 (5)	0.0312 (3)	0.0444 (13)
C9 $0.1419(7)$ $-0.1849(6)$ $-0.1123(4)$ $0.0653(17)$ H9A 0.1759 -0.1408 -0.1713 $0.098*$ H9B 0.0449 -0.1813 -0.1116 $0.098*$ H9C 0.1985 -0.2656 -0.1019 $0.098*$ C10 $0.1982(6)$ $-0.0416(5)$ $-0.0504(3)$ $0.0478(14)$ C11 $0.2115(7)$ $0.0452(5)$ $-0.1417(4)$ $0.0659(17)$ H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 $0.1099(6)$ $-0.3036(5)$ $0.855(3)$ $0.0456(13)$ C13 $0.1934(6)$ $-0.4053(6)$ $0.1355(4)$ $0.0611(17)$ H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 $0.1494(7)$ $-0.5066(6)$ $0.1643(4)$ $0.0684(19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245(8)$ $-0.5076(6)$ $0.1429(4)$ $0.0716(19)$ H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 $-0.588(7)$ $-0.4060(5)$ $0.0940(4)$ $0.0633(17)$	C8	0.2039 (6)	-0.1426 (5)	0.1000 (4)	0.0532 (15)
H9A0.1759-0.1408-0.17130.098*H9B0.0449-0.1813-0.11160.098*H9C0.1985-0.2656-0.10190.098*C100.1982 (6)-0.0416 (5)-0.0504 (3)0.0478 (14)C110.2115 (7)0.0452 (5)-0.1417 (4)0.0659 (17)H11A0.27740.0057-0.18560.099*H11B0.24500.1061-0.13460.099*H11C0.12050.0795-0.16350.099*C120.1099 (6)-0.3036 (5)0.0855 (3)0.0456 (13)C130.1934 (6)-0.4053 (6)0.1355 (4)0.0611 (17)H13A0.2790-0.5066 (6)0.1643 (4)0.0684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	C9	0.1419 (7)	-0.1849 (6)	-0.1123 (4)	0.0653 (17)
H9B0.0449-0.1813-0.11160.098*H9C0.1985-0.2656-0.10190.098*C100.1982 (6)-0.0416 (5)-0.0504 (3)0.0478 (14)C110.2115 (7)0.0452 (5)-0.1417 (4)0.0659 (17)H11A0.27740.0057-0.18560.099*H11B0.24500.1061-0.13460.099*H11C0.12050.0795-0.16350.099*C120.1099 (6)-0.3036 (5)0.0855 (3)0.0456 (13)C130.1934 (6)-0.4053 (6)0.1355 (4)0.0611 (17)H13A0.2790-0.40590.14980.073*C140.1494 (7)-0.5066 (6)0.1643 (4)0.0684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.1429 (4)0.0716 (19)H15A-0.0033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	H9A	0.1759	-0.1408	-0.1713	0.098*
H9C 0.1985 -0.2656 -0.1019 $0.098*$ C10 $0.1982 (6)$ $-0.0416 (5)$ $-0.0504 (3)$ $0.0478 (14)$ C11 $0.2115 (7)$ $0.0452 (5)$ $-0.1417 (4)$ $0.0659 (17)$ H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 $0.1099 (6)$ $-0.3036 (5)$ $0.0855 (3)$ $0.0456 (13)$ C13 $0.1934 (6)$ $-0.4053 (6)$ $0.1355 (4)$ $0.0611 (17)$ H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 $0.1494 (7)$ $-0.5066 (6)$ $0.1643 (4)$ $0.0684 (19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245 (8)$ $-0.5076 (6)$ $0.1429 (4)$ $0.0716 (19)$ H15A -0.0033 -0.5766 0.1644 $0.086*$ C16 $-0.0588 (7)$ $-0.4060 (5)$ $0.0940 (4)$ $0.0633 (17)$	H9B	0.0449	-0.1813	-0.1116	0.098*
C10 $0.1982 (6)$ $-0.0416 (5)$ $-0.0504 (3)$ $0.0478 (14)$ C11 $0.2115 (7)$ $0.0452 (5)$ $-0.1417 (4)$ $0.0659 (17)$ H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 $0.1099 (6)$ $-0.3036 (5)$ $0.0855 (3)$ $0.0456 (13)$ C13 $0.1934 (6)$ $-0.4053 (6)$ $0.1355 (4)$ $0.0611 (17)$ H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 $0.1494 (7)$ $-0.5066 (6)$ $0.1643 (4)$ $0.0684 (19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245 (8)$ $-0.5076 (6)$ $0.1429 (4)$ $0.0716 (19)$ H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 $-0.588 (7)$ $-0.4060 (5)$ $0.0940 (4)$ $0.0633 (17)$	H9C	0.1985	-0.2656	-0.1019	0.098*
C11 $0.2115 (7)$ $0.0452 (5)$ $-0.1417 (4)$ $0.0659 (17)$ H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 $0.1099 (6)$ $-0.3036 (5)$ $0.0855 (3)$ $0.0456 (13)$ C13 $0.1934 (6)$ $-0.4053 (6)$ $0.1355 (4)$ $0.0611 (17)$ H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 $0.1494 (7)$ $-0.5066 (6)$ $0.1643 (4)$ $0.0684 (19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245 (8)$ $-0.5076 (6)$ $0.1429 (4)$ $0.0716 (19)$ H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 $-0.0588 (7)$ $-0.4060 (5)$ $0.0940 (4)$ $0.0633 (17)$	C10	0.1982 (6)	-0.0416 (5)	-0.0504 (3)	0.0478 (14)
H11A 0.2774 0.0057 -0.1856 $0.099*$ H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 0.1099 (6) -0.3036 (5) 0.0855 (3) 0.0456 (13)C13 0.1934 (6) -0.4053 (6) 0.1355 (4) 0.0611 (17)H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 0.1494 (7) -0.5066 (6) 0.1643 (4) 0.0684 (19)H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 0.0245 (8) -0.5076 (6) 0.1429 (4) 0.0716 (19)H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 -0.0588 (7) -0.4060 (5) 0.0940 (4) 0.0633 (17)	C11	0.2115 (7)	0.0452 (5)	-0.1417 (4)	0.0659 (17)
H11B 0.2450 0.1061 -0.1346 $0.099*$ H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 0.1099 (6) -0.3036 (5) 0.0855 (3) 0.0456 (13)C13 0.1934 (6) -0.4053 (6) 0.1355 (4) 0.0611 (17)H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 0.1494 (7) -0.5066 (6) 0.1643 (4) 0.0684 (19)H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 0.0245 (8) -0.5076 (6) 0.1429 (4) 0.0716 (19)H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 -0.0588 (7) -0.4060 (5) 0.0940 (4) 0.0633 (17)	H11A	0.2774	0.0057	-0.1856	0.099*
H11C 0.1205 0.0795 -0.1635 $0.099*$ C12 $0.1099 (6)$ $-0.3036 (5)$ $0.0855 (3)$ $0.0456 (13)$ C13 $0.1934 (6)$ $-0.4053 (6)$ $0.1355 (4)$ $0.0611 (17)$ H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 $0.1494 (7)$ $-0.5066 (6)$ $0.1643 (4)$ $0.0684 (19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245 (8)$ $-0.5076 (6)$ $0.1429 (4)$ $0.0716 (19)$ H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 $-0.0588 (7)$ $-0.4060 (5)$ $0.0940 (4)$ $0.0633 (17)$	H11B	0.2450	0.1061	-0.1346	0.099*
C12 $0.1099(6)$ $-0.3036(5)$ $0.0855(3)$ $0.0456(13)$ C13 $0.1934(6)$ $-0.4053(6)$ $0.1355(4)$ $0.0611(17)$ H13A 0.2790 -0.4059 0.1498 $0.073*$ C14 $0.1494(7)$ $-0.5066(6)$ $0.1643(4)$ $0.0684(19)$ H14A 0.2055 -0.5752 0.1988 $0.082*$ C15 $0.0245(8)$ $-0.5076(6)$ $0.1429(4)$ $0.0716(19)$ H15A -0.0033 -0.5766 0.1614 $0.086*$ C16 $-0.0588(7)$ $-0.4060(5)$ $0.0940(4)$ $0.0633(17)$	H11C	0.1205	0.0795	-0.1635	0.099*
C130.1934 (6)-0.4053 (6)0.1355 (4)0.0611 (17)H13A0.2790-0.40590.14980.073*C140.1494 (7)-0.5066 (6)0.1643 (4)0.0684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.1429 (4)0.0716 (19)H15A-0.0033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	C12	0.1099 (6)	-0.3036 (5)	0.0855 (3)	0.0456 (13)
H13A0.2790-0.40590.14980.073*C140.1494 (7)-0.5066 (6)0.1643 (4)0.0684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.1429 (4)0.0716 (19)H15A-0.0033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	C13	0.1934 (6)	-0.4053 (6)	0.1355 (4)	0.0611 (17)
C140.1494 (7)-0.5066 (6)0.1643 (4)0.0684 (19)H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.1429 (4)0.0716 (19)H15A-0.0033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	H13A	0.2790	-0.4059	0.1498	0.073*
H14A0.2055-0.57520.19880.082*C150.0245 (8)-0.5076 (6)0.1429 (4)0.0716 (19)H15A-0.0033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	C14	0.1494 (7)	-0.5066 (6)	0.1643 (4)	0.0684 (19)
C150.0245 (8)-0.5076 (6)0.1429 (4)0.0716 (19)H15A-0.0033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	H14A	0.2055	-0.5752	0.1988	0.082*
H15A-0.0033-0.57660.16140.086*C16-0.0588 (7)-0.4060 (5)0.0940 (4)0.0633 (17)	C15	0.0245 (8)	-0.5076 (6)	0.1429 (4)	0.0716 (19)
C16 -0.0588 (7) -0.4060 (5) 0.0940 (4) 0.0633 (17)	H15A	-0.0033	-0.5766	0.1614	0.086*
	C16	-0.0588 (7)	-0.4060 (5)	0.0940 (4)	0.0633 (17)

H16A	-0.1443	-0.4059	0.0798	0.076*
C17	-0.0176 (6)	-0.3035 (5)	0.0656 (4)	0.0537 (15)
H17A	-0.0757	-0.2345	0.0331	0.064*
C18	0.5023 (5)	0.7949 (4)	0.4609 (4)	0.0428 (13)
H18A	0.5413	0.8495	0.4687	0.051*
C19	0.5012 (6)	0.7883 (5)	0.3727 (4)	0.0475 (13)
H19A	0.5408	0.8370	0.3221	0.057*
C20	0.4414 (5)	0.7093 (4)	0.3593 (4)	0.0464 (13)
H20A	0.4409	0.7036	0.2999	0.056*
C21	0.3823 (5)	0.6389 (4)	0.4360 (3)	0.0379 (12)
C22	0.3906 (5)	0.6490 (4)	0.5229 (3)	0.0388 (12)
H22A	0.3535	0.6000	0.5746	0.047*
C23	0.3187 (5)	0.5523 (4)	0.4278 (4)	0.0415 (12)
H23A	0.3280	0.5357	0.3709	0.050*
C24	0.1985 (5)	0.4090 (4)	0.4968 (3)	0.0350 (11)
C25	0.2266 (5)	0.3429 (4)	0.4310 (3)	0.0342 (11)
C26	0.1086 (5)	0.3641 (4)	0.5703 (3)	0.0405 (12)
C27	0.0579 (6)	0.3964 (5)	0.6601 (4)	0.0620 (16)
H27A	-0.0420	0.4352	0.6639	0.093*
H27B	0.1074	0.4485	0.6650	0.093*
H27C	0.0755	0.3265	0.7098	0.093*
C28	0.0008 (6)	0.1944 (5)	0.6100 (4)	0.0629 (17)
H28A	0.0684	0.1202	0.6311	0.094*
H28B	-0.0619	0.1841	0.5757	0.094*
H28C	-0.0531	0.2236	0.6624	0.094*
C29	0.1161 (5)	0.1969 (4)	0.4157 (3)	0.0371 (11)
C30	0.2016 (5)	0.0863 (4)	0.4116 (4)	0.0475 (14)
H30A	0.2800	0.0520	0.4437	0.057*
C31	0.1695 (6)	0.0269 (5)	0.3593 (4)	0.0592 (16)
H31A	0.2277	-0.0476	0.3549	0.071*
C32	0.0524 (6)	0.0767 (5)	0.3135 (4)	0.0578 (16)
H32A	0.0318	0.0360	0.2781	0.069*
C33	-0.0341 (6)	0.1856 (5)	0.3195 (4)	0.0664 (18)
H33A	-0.1144	0.2184	0.2893	0.080*
C34	-0.0025 (6)	0.2472 (5)	0.3706 (4)	0.0548 (15)
H34A	-0.0606	0.3218	0.3745	0.066*
N1	0.4672 (4)	0.2542 (4)	0.1794 (3)	0.0422 (10)
N2	0.2830 (4)	0.0471 (4)	0.0375 (3)	0.0460 (11)
N3	0.1569 (5)	-0.2006 (4)	0.0520 (3)	0.0510 (12)
N4	0.1516 (5)	-0.1351 (4)	-0.0398 (3)	0.0498 (12)
N5	0.4485 (4)	0.7247 (3)	0.5364 (3)	0.0376 (10)
N6	0.2502 (4)	0.4994 (3)	0.4991 (3)	0.0408 (10)
N7	0.1511 (4)	0.2608 (3)	0.4669 (3)	0.0390 (10)
N8	0.0750 (4)	0.2783 (4)	0.5509 (3)	0.0434 (10)
01	0.2122 (5)	-0.1777 (4)	0.1843 (3)	0.0763 (13)
02	0.3029 (3)	0.3472 (3)	0.3532 (2)	0.0402 (8)
	· /			× /

Atomic dis	placement	parameters	$(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0660 (4)	0.0392 (3)	0.0413 (3)	-0.0147 (3)	-0.0104 (3)	-0.0116 (2)
Br2	0.0723 (4)	0.0535 (3)	0.0454 (3)	-0.0370 (3)	-0.0010 (3)	-0.0092 (3)
Mn1	0.0430 (4)	0.0372 (4)	0.0343 (4)	-0.0177 (4)	-0.0038 (3)	-0.0111 (3)
C1	0.054 (3)	0.048 (3)	0.043 (3)	-0.015 (3)	-0.015 (3)	-0.008(3)
C2	0.046 (3)	0.053 (3)	0.039 (3)	-0.013 (3)	-0.009 (3)	-0.018 (3)
C3	0.069 (4)	0.073 (4)	0.032 (3)	-0.022 (3)	-0.011 (3)	-0.009 (3)
C4	0.071 (4)	0.069 (4)	0.036 (3)	-0.027 (3)	-0.009(3)	-0.002 (3)
C5	0.058 (4)	0.052 (3)	0.045 (3)	-0.021 (3)	-0.008 (3)	-0.006 (3)
C6	0.056 (3)	0.061 (4)	0.040 (3)	-0.015 (3)	-0.015 (3)	-0.017 (3)
C7	0.037 (3)	0.063 (4)	0.036 (3)	-0.011 (3)	-0.006 (2)	-0.020(3)
C8	0.057 (4)	0.078 (4)	0.035 (3)	-0.023 (3)	-0.006 (3)	-0.023 (3)
С9	0.083 (4)	0.086 (5)	0.046 (4)	-0.039 (4)	-0.010 (3)	-0.027 (3)
C10	0.051 (3)	0.056 (3)	0.037 (3)	-0.008 (3)	-0.007 (3)	-0.020(3)
C11	0.098 (5)	0.063 (4)	0.041 (3)	-0.023 (4)	-0.014 (3)	-0.016 (3)
C12	0.051 (3)	0.056 (3)	0.033 (3)	-0.016 (3)	-0.005 (3)	-0.014 (3)
C13	0.048 (3)	0.086 (5)	0.042 (3)	-0.002 (4)	-0.007 (3)	-0.022 (3)
C14	0.074 (5)	0.062 (4)	0.049 (4)	0.007 (4)	-0.009 (3)	-0.013 (3)
C15	0.096 (5)	0.054 (4)	0.062 (4)	-0.025 (4)	0.000 (4)	-0.014 (3)
C16	0.067 (4)	0.064 (4)	0.069 (4)	-0.024 (3)	-0.013 (3)	-0.022 (3)
C17	0.054 (3)	0.056 (4)	0.052 (3)	-0.010 (3)	-0.017 (3)	-0.012 (3)
C18	0.052 (3)	0.039 (3)	0.047 (3)	-0.019 (3)	-0.013 (3)	-0.013 (2)
C19	0.059 (3)	0.049 (3)	0.038 (3)	-0.022 (3)	-0.009 (3)	-0.006 (2)
C20	0.057 (3)	0.045 (3)	0.039 (3)	-0.013 (3)	-0.011 (3)	-0.011 (2)
C21	0.040 (3)	0.039 (3)	0.042 (3)	-0.013 (2)	-0.009 (2)	-0.015 (2)
C22	0.043 (3)	0.039 (3)	0.040 (3)	-0.015 (2)	-0.010 (2)	-0.012 (2)
C23	0.050 (3)	0.040 (3)	0.042 (3)	-0.015 (3)	-0.014 (3)	-0.014 (2)
C24	0.036 (3)	0.038 (3)	0.035 (3)	-0.013 (2)	-0.008 (2)	-0.011 (2)
C25	0.037 (3)	0.038 (3)	0.033 (3)	-0.014 (2)	-0.006 (2)	-0.011 (2)
C26	0.040 (3)	0.044 (3)	0.039 (3)	-0.012 (2)	-0.002 (2)	-0.016 (2)
C27	0.076 (4)	0.067 (4)	0.047 (3)	-0.021 (3)	0.004 (3)	-0.026 (3)
C28	0.059 (4)	0.061 (4)	0.062 (4)	-0.032 (3)	0.010 (3)	-0.002 (3)
C29	0.040 (3)	0.038 (3)	0.043 (3)	-0.020 (2)	-0.005 (2)	-0.013 (2)
C30	0.048 (3)	0.044 (3)	0.060 (4)	-0.013 (3)	-0.019 (3)	-0.019 (3)
C31	0.065 (4)	0.041 (3)	0.080 (4)	-0.016 (3)	-0.021 (4)	-0.017 (3)
C32	0.079 (4)	0.053 (4)	0.057 (4)	-0.034 (3)	-0.020 (3)	-0.012 (3)
C33	0.065 (4)	0.056 (4)	0.090 (5)	-0.019 (3)	-0.044 (4)	-0.010 (4)
C34	0.051 (3)	0.043 (3)	0.074 (4)	-0.008 (3)	-0.028 (3)	-0.013 (3)
N1	0.047 (3)	0.047 (2)	0.035 (2)	-0.013 (2)	-0.006 (2)	-0.014 (2)
N2	0.045 (3)	0.061 (3)	0.041 (3)	-0.014 (2)	-0.005 (2)	-0.026 (2)
N3	0.057 (3)	0.074 (3)	0.033 (2)	-0.028 (3)	-0.007 (2)	-0.017 (2)
N4	0.062 (3)	0.060 (3)	0.033 (2)	-0.011 (2)	-0.013 (2)	-0.021 (2)
N5	0.045 (2)	0.032 (2)	0.042 (2)	-0.0137 (19)	-0.012 (2)	-0.0093 (18)
N6	0.044 (2)	0.043 (2)	0.044 (3)	-0.016 (2)	-0.009 (2)	-0.017 (2)
N7	0.043 (2)	0.043 (2)	0.038 (2)	-0.017 (2)	-0.003 (2)	-0.0165 (19)

N8 O1	0.051 (3) 0.114 (4)	0.050 (3) 0.101 (3)	0.035 (2) 0.035 (2)	-0.025(2) -0.056(3)	0.004 (2) -0.019 (2)	-0.012 (2) -0.013 (2)
02	0.0418 (19)	0.054 (2)	0.0354 (19)	-0.0218(17)	-0.0022 (16)	-0.0186 (16)
Geometric paran	neters (Å, °)					
Br1—Mn1		2.5441 (12)	С17—Н	17A	0.930	0
Br2—Mn1		2.5387 (12)	C18—N	5	1.348	(6)
Mn1—O2		2.080 (3)	C18—C	19	1.374	(7)
Mn1—N5 ⁱ		2.341 (4)	С18—Н	18A	0.930	0
Mn1—N1		2.360 (4)	C19—C	20	1.384	(7)
C1—N1		1.345 (6)	С19—Н	19A	0.930	0
C1—C2		1.386 (7)	C20—C	21	1.383	(7)
C1—H1A		0.9300	С20—Н	20A	0.930	0
C2—C3		1.395 (7)	C21—C	22	1.389	(6)
C2—C6		1.467 (7)	C21—C	23	1.459	(6)
C3—C4		1.360 (8)	C22—N	5	1.334	(6)
С3—НЗА		0.9300	С22—Н	22A	0.930	0
C4—C5		1.384 (7)	C23—N	6	1.279	(6)
C4—H4A		0.9300	С23—Н	23A	0.930	0
C5—N1		1.336 (6)	C24—C	26	1.380	(7)
C5—H5A		0.9300	C24—N	6	1.389	(6)
C6—N2		1.270 (6)	C24—C	25	1.405	(7)
С6—Н6А		0.9300	C25—O	2	1.265	(5)
C7—C10		1.361 (7)	C25—N	7	1.378	(6)
C7—N2		1.378 (7)	C26—N	8	1.337	(6)
С7—С8		1.446 (8)	C26—C	27	1.482	(7)
C8—O1		1.241 (6)	С27—Н	27A	0.960	0
C8—N3		1.399 (7)	С27—Н	27B	0.960	0
C9—N4		1.450 (7)	С27—Н	27C	0.960	0
С9—Н9А		0.9600	C28—N	8	1.450	(6)
С9—Н9В		0.9600	С28—Н	28A	0.960	0
С9—Н9С		0.9600	С28—Н	28B	0.960	0
C10—N4		1.339 (7)	С28—Н	28C	0.960	0
C10-C11		1.494 (7)	С29—С	30	1.371	(7)
C11—H11A		0.9600	С29—С	34	1.378	(6)
C11—H11B		0.9600	C29—N	7	1.423	(6)
C11—H11C		0.9600	С30—С	31	1.377	(7)
C12—C13		1.374 (7)	С30—Н	30A	0.930	0
C12—C17		1.378 (7)	C31—C	32	1.370	(7)
C12—N3		1.418 (7)	С31—Н	31A	0.930	0
C13—C14		1.381 (9)	С32—С	33	1.364	(8)
С13—Н13А		0.9300	С32—Н	32A	0.930	0
C14—C15		1.368 (9)	C33—C	34	1.379	(8)
C14—H14A		0.9300	С33—Н	33A	0.930	U
C15—C16		1.365 (8)	С34—Н	34A	0.930	U
C15—H15A		0.9300	N3—N4		1.395	(5)
C16—C17		1.380 (8)	N5—Mi	n11	2.341	(4)
C16—H16A		0.9300	N7—N8	3	1.383	(5)

O2—Mn1—N5 ⁱ	87.27 (13)	C21—C20—C19	118.5 (5)
O2—Mn1—N1	89.45 (14)	C21—C20—H20A	120.7
$N5^{i}$ —Mn1—N1	171.60 (15)	C19—C20—H20A	120.7
O2—Mn1—Br2	109.22 (10)	C20—C21—C22	117.9 (5)
N5 ⁱ —Mn1—Br2	94.75 (10)	C20—C21—C23	121.9 (5)
N1—Mn1—Br2	93.63 (11)	C22—C21—C23	120.1 (5)
O2—Mn1—Br1	122.63 (10)	N5—C22—C21	123.9 (5)
N5 ⁱ —Mn1—Br1	86.76 (10)	N5—C22—H22A	118.1
N1—Mn1—Br1	88 51 (11)	C21—C22—H22A	118 1
Br2—Mn1—Br1	128 13 (4)	N6-C23-C21	119.8 (5)
N1-C1-C2	124.3 (5)	N6-C23-H23A	120.1
N1—C1—H1A	117.9	C21—C23—H23A	120.1
C2—C1—H1A	117.9	C26—C24—N6	121.0 (4)
C1—C2—C3	116.5 (5)	C26—C24—C25	107.5 (4)
C1—C2—C6	122.2 (5)	N6—C24—C25	131.4 (5)
C3—C2—C6	121.3 (5)	O2—C25—N7	121.1 (4)
C4—C3—C2	120.2 (5)	O2—C25—C24	132.7 (5)
С4—С3—НЗА	119.9	N7—C25—C24	106.2 (4)
С2—С3—НЗА	119.9	N8—C26—C24	109.2 (4)
C3—C4—C5	119.1 (5)	N8—C26—C27	122.4 (5)
C3—C4—H4A	120.4	C24—C26—C27	128.3 (5)
С5—С4—Н4А	120.4	С26—С27—Н27А	109.5
N1—C5—C4	122.7 (5)	С26—С27—Н27В	109.5
N1—C5—H5A	118.6	H27A—C27—H27B	109.5
C4—C5—H5A	118.6	С26—С27—Н27С	109.5
N2	119.0 (5)	H27A—C27—H27C	109.5
N2—C6—H6A	120.5	Н27В—С27—Н27С	109.5
С2—С6—Н6А	120.5	N8—C28—H28A	109.5
C10—C7—N2	121.4 (5)	N8—C28—H28B	109.5
C10—C7—C8	107.6 (5)	H28A—C28—H28B	109.5
N2—C7—C8	131.0 (5)	N8—C28—H28C	109.5
O1—C8—N3	123.0 (5)	H28A—C28—H28C	109.5
O1—C8—C7	132.3 (5)	H28B—C28—H28C	109.5
N3—C8—C7	104.7 (4)	C30—C29—C34	121.0 (5)
N4—C9—H9A	109.5	C30—C29—N7	119.4 (4)
N4—C9—H9B	109.5	C34—C29—N7	119.6 (5)
Н9А—С9—Н9В	109.5	C29—C30—C31	118.9 (5)
N4—C9—H9C	109.5	С29—С30—Н30А	120.5
Н9А—С9—Н9С	109.5	C31—C30—H30A	120.5
Н9В—С9—Н9С	109.5	C32—C31—C30	120.4 (5)
N4—C10—C7	110.6 (5)	C32—C31—H31A	119.8
N4—C10—C11	122.3 (5)	C30—C31—H31A	119.8
C7—C10—C11	127.2 (6)	C33—C32—C31	120.4 (5)
C10—C11—H11A	109.5	С33—С32—Н32А	119.8
C10—C11—H11B	109.5	C31—C32—H32A	119.8
H11A—C11—H11B	109.5	C32—C33—C34	120.0 (5)
C10—C11—H11C	109.5	С32—С33—Н33А	120.0
H11A—C11—H11C	109.5	С34—С33—Н33А	120.0

H11B—C11—H11C	109.5	C29—C34—C33	119.2 (5)
C13—C12—C17	119.6 (6)	C29—C34—H34A	120.4
C13—C12—N3	120.1 (5)	C33—C34—H34A	120.4
C17—C12—N3	120.2 (5)	C5—N1—C1	117.2 (4)
C12—C13—C14	119.6 (6)	C5—N1—Mn1	121.8 (4)
С12—С13—Н13А	120.2	C1—N1—Mn1	121.0 (3)
C14—C13—H13A	120.2	C6—N2—C7	125.6 (5)
C15—C14—C13	120.9 (6)	N4—N3—C8	108.8 (4)
C15—C14—H14A	119.5	N4—N3—C12	121.6 (4)
C13—C14—H14A	119.5	C8—N3—C12	129.4 (4)
C16—C15—C14	119.2 (6)	C10—N4—N3	108.2 (4)
С16—С15—Н15А	120.4	C10—N4—C9	127.0 (5)
C14—C15—H15A	120.4	N3—N4—C9	122.0 (5)
C15—C16—C17	120.7 (6)	C22—N5—C18	117.5 (4)
C15—C16—H16A	119.6	C22—N5—Mn1 ⁱ	122.6 (3)
C17—C16—H16A	119.6	C18—N5—Mn1 ⁱ	119.5 (3)
C12—C17—C16	119.8 (5)	C23—N6—C24	122.0 (4)
C12—C17—H17A	120.1	C25—N7—N8	108.7 (4)
C16—C17—H17A	120.1	C25—N7—C29	125.7 (4)
N5-C18-C19	122.1 (5)	N8—N7—C29	122.4 (4)
N5-C18-H18A	118.9	C26—N8—N7	108.3 (4)
C19—C18—H18A	118.9	C26—N8—C28	129.9 (5)
C18—C19—C20	120.0 (5)	N7—N8—C28	120.4 (5)
C18—C19—H19A	120.0	C25-O2-Mn1	132.0 (3)
С20—С19—Н19А	120.0		(-)
N1—C1—C2—C3	1.6 (8)	Br2—Mn1—N1—C5	-7.7 (4)
N1—C1—C2—C6	179.7 (5)	Br1—Mn1—N1—C5	-135.8 (4)
C1—C2—C3—C4	-1.5 (8)	O2—Mn1—N1—C1	-77.7 (4)
C6—C2—C3—C4	-179.6 (5)	$N5^{i}$ —Mn1—N1—C1	-10.8 (12)
C2—C3—C4—C5	0.4 (9)	Br2-Mn1-N1-C1	173.1 (4)
C_{3} — C_{4} — C_{5} — N_{1}	0.8 (9)	Br1-Mn1-N1-C1	44.9 (4)
C1 - C2 - C6 - N2	172.9 (5)	C2-C6-N2-C7	179.1 (5)
C_{3} — C_{2} — C_{6} — N_{2}	-9.1 (8)	C10—C7—N2—C6	-174.2(5)
C10-C7-C8-O1	-177.1 (6)	C8-C7-N2-C6	3.6 (9)
N2-C7-C8-01	4.8 (11)	01—C8—N3—N4	176.4 (5)
C10-C7-C8-N3	0.6 (6)	C7—C8—N3—N4	-1.6(6)
N2-C7-C8-N3	-177.5 (5)	01 - C8 - N3 - C12	0.9 (9)
N2-C7-C10-N4	179.0 (4)	C7—C8—N3—C12	-177.1 (5)
C8—C7—C10—N4	0.7 (6)	C13—C12—N3—N4	131.6 (5)
N2-C7-C10-C11	-0.5 (9)	C17—C12—N3—N4	-46.3 (7)
C8—C7—C10—C11	-178.8 (5)	C13—C12—N3—C8	-53.4 (8)
C17—C12—C13—C14	0.7 (8)	C17—C12—N3—C8	128.7 (6)
N3—C12—C13—C14	-177.2 (5)	C7—C10—N4—N3	-1.8 (6)
C12—C13—C14—C15	0.8 (9)	C11—C10—N4—N3	177.8 (5)
C13—C14—C15—C16	-1.4 (10)	C7—C10—N4—C9	-162.7 (5)
C14—C15—C16—C17	0.6 (10)	C11—C10—N4—C9	16.9 (8)
C13—C12—C17—C16	-1.5 (9)	C8—N3—N4—C10	2.1 (6)
N3—C12—C17—C16	176.4 (5)	C12—N3—N4—C10	178.1 (5)

C15-C16-C17-C12	0.9 (9)	C8—N3—N4—C9	164.2 (5)
N5-C18-C19-C20	1.2 (8)	C12—N3—N4—C9	-19.9 (7)
C18—C19—C20—C21	0.6 (8)	C21-C22-N5-C18	-0.2 (7)
C19—C20—C21—C22	-2.1 (7)	C21—C22—N5—Mn1 ⁱ	-173.3 (4)
C19—C20—C21—C23	-179.2 (4)	C19-C18-N5-C22	-1.4 (7)
C20—C21—C22—N5	1.9 (7)	C19—C18—N5—Mn1 ⁱ	172.0 (4)
C23-C21-C22-N5	179.2 (4)	C21—C23—N6—C24	-174.2 (4)
C20-C21-C23-N6	-171.5 (5)	C26—C24—N6—C23	-171.0 (4)
C22—C21—C23—N6	11.4 (7)	C25-C24-N6-C23	13.1 (7)
C26—C24—C25—O2	-179.0 (5)	O2—C25—N7—N8	-178.5 (4)
N6-C24-C25-O2	-2.6 (8)	C24—C25—N7—N8	1.9 (5)
C26—C24—C25—N7	0.6 (5)	O2—C25—N7—C29	-18.5 (7)
N6-C24-C25-N7	176.9 (4)	C24—C25—N7—C29	161.9 (4)
N6-C24-C26-N8	-179.8 (4)	C30—C29—N7—C25	95.3 (6)
C25-C24-C26-N8	-3.0 (5)	C34—C29—N7—C25	-84.4 (6)
N6-C24-C26-C27	-2.6 (8)	C30—C29—N7—N8	-107.3 (5)
C25—C24—C26—C27	174.2 (5)	C34—C29—N7—N8	72.9 (6)
C34—C29—C30—C31	1.9 (8)	C24—C26—N8—N7	4.2 (5)
N7—C29—C30—C31	-177.8 (5)	C27—C26—N8—N7	-173.2 (4)
C29—C30—C31—C32	-1.3 (9)	C24—C26—N8—C28	170.5 (5)
C30—C31—C32—C33	-0.3 (9)	C27-C26-N8-C28	-6.9 (8)
C31—C32—C33—C34	1.2 (10)	C25—N7—N8—C26	-3.8 (5)
C30—C29—C34—C33	-1.0 (8)	C29—N7—N8—C26	-164.6 (4)
N7—C29—C34—C33	178.8 (5)	C25—N7—N8—C28	-171.7 (4)
C32—C33—C34—C29	-0.6 (9)	C29—N7—N8—C28	27.6 (6)
C4—C5—N1—C1	-0.7 (8)	N7—C25—O2—Mn1	-95.7 (5)
C4—C5—N1—Mn1	180.0 (4)	C24—C25—O2—Mn1	83.8 (6)
C2-C1-N1-C5	-0.5 (8)	N5 ⁱ —Mn1—O2—C25	-24.9 (4)
C2—C1—N1—Mn1	178.8 (4)	N1—Mn1—O2—C25	147.3 (4)
O2—Mn1—N1—C5	101.5 (4)	Br2—Mn1—O2—C25	-119.0 (4)
N5 ⁱ —Mn1—N1—C5	168.5 (8)	Br1—Mn1—O2—C25	59.4 (4)

Symmetry codes: (i) -x+1, -y+1, -z+1.

Fig. 1

